Skip to main content

Reverse Geocoding

    The term geocoding generally refers to translating a human-readable address into a location on the map. The process of doing the converse, translating a location on the map into a human-readable address, is known as reverse geocoding. You can read more about geocoding here.

    The Geocoder in Google Maps API v3, supports reverse geocoding directly. While geocoding, we supply a textual address and that gets mapped as a location on the map. However, in reverse geocoding, instead of supplying the textual address, we will supply a comma- separated latitude- longitude pair and get a textual address as the result. You can have a look at the geocoding example here, before proceeding to the reverse geocoding example.

    The reverse geocoder often returns more than one result. Geocoding "addresses" are not just postal addresses, but any way to geographically name a location. For example, when geocoding a point in the city of Agra, India, the geocoded point may be labelled as a street address, as the city (Agra), as its state (Uttar Pradesh) or as a country (India). All are addresses to the geocoder. The reverse geocoder returns all of these results. Addresses are returned in the order of best to least matches.

    Before it gets too confusing, let us have a look at the following reverse geocoding example and based on the same we will discuss the addresses.



    The main thing that needs concentration in the above code is "results[]". The Google Maps API v3 returns 7 values in the descending order of accuracy of the textual address. In the above code, I have used "results[0]" which will return the most accurate result of reverse geocoding; i.e. the most accurate textual, human-understandable address will be returned.

         The output of the above code for results[0] is as seen below. Please see the details of the address in the info-window.


          For results[1] :


          For results[2] :


          For results[3] :


         For results[4] :


         For results[5] :


         For results[6] :



         As you can see that, the accuracy of the results[] geocoding keeps on decreasing. Now if you put results[7], then the output would be as seen in the image below. The geocoder finds no results to return.


    I hope the concept of reverse geocoding is now clear along with the results that are returned by the geocoder. Hope the images speak my words.If you have any further doubts or queries regarding this post then please feel free to drop a comment here.

    Till then...Happy mapping!

Comments

Recommended for You

Playing with the markers and info window bubbles...

    In the last few posts, we have seen some marker examples and some information window examples. Now, lets do something interesting combining these two things. Just writing that "This is an info window" in the information bubble is not very interesting! And I know this...Have gone through the same phase!     So, today we will do something interesting! We will display the latitude- longitude co-ordinates of the point that the user clicks on the map! Doing this is not at all complex! Copy paste the following code and you will see for yourself a map coming to life!     The output of the above code looks as seen in the result section above! If you have any queries regarding the above code please comment on the blog post or feel free to contact me at my mail ID .

Ground Truth - How Google Builds Maps

    Todays's article is cross posted from The Atlantic 's Tech section. The article was posted by Alexis Madrigal who is a senior editor at The Atlantic , where he oversees the Technology channel. So, thanks to The Atlantic and Alexis Madrigal, we will have an exclusive look inside Ground Truth , the secretive program to build the world's best accurate maps.     Behind every Google Map, there is a much more complex map that's the key to your queries but hidden from your view. The deep map contains the logic of places: their no-left-turns and freeway on-ramps, speed limits and traffic conditions. This is the data that you're drawing from when you ask Google to navigate you from point A to point B -- and last week, Google showed me the internal map and demonstrated how it was built. It's the first time the company has let anyone watch how the project it calls GT, or "Ground Truth," actually works.     Google opened up at a key moment in its evo...

Difference between word-break: break-all versus word-wrap: break-word

    The 2 CSS properties  word-break: break-all  and  word-wrap: break-word  appear to work in the same way or generate the same output, but there is a slight difference between the 2 and we will be discussing these differences today.     Take a look at the example above. The difference is quite evident, however I will try to explain it further. word-break: break-all Irrespective of whether it’s a continuous word or many words, break-all breaks them up at the edge of the width limit even within the characters of the same word word-wrap: break-word This will wrap long words onto the next line. break-word adjusts different words so that they do not break in the middle.     So if you have many fixed-size spans which get content dynamically, you might just prefer using  word-wrap: break-word , as that way only the continuous words are broken in between, and in case it’s a sentence comprising many words, the spa...

The Bicycling Layer...

    Recreational cyclists and bike commuters alike can plot cycle-friendly routes, find trails, and avoid snarling traffic with Google Map's Bicycle layer. Map's bike-friendly, green-toned map layer is very eye-pleasing. The Google Maps API allows you to add bicycle information to your maps using the BicyclingLayer object.     The BicyclingLayer renders a layer of bike paths, suggested bike routes and other overlays specific to bicycling usage on top of the given map. Additionally, the layer alters the style of the base map itself to emphasize streets supporting bicycle routes and de-emphasize streets inappropriate for bicycles.     Let us have a look at the following example. The code has a map which is centered at Pune, India. There are very few cycle tracks in Pune and so you will see just a few dark green lines on the map. But if you would change the latitude-longitude values in the code and center the map at USA, then you will see a...

Fusion Table Layer...

    Today we will have a look at the "Fusion Table" Layer example. But before we start with the actual code, we will have a look at what Fusion Table is. Google Fusion Table is a free service for sharing and visualizing data online. It allows you to share data, merge data from multiple tables into interesting derived tables, and see the most up-to-date data from all sources. There is a lot of documentation about Google Fusion Table available on the web. You can visit their home page or the Google Research Blog to gather more information about Fusion Tables.     Let us have a look at the following code. The code is very short and simple to understand!     The few things to look out for in the above code are: The manner in which mapTypeId has been specified! In other Google Maps API v3 examples, we have seen that we specify mapTypeID as ROADMAP, SATELLITE, etc. i.e., all the letters are in uppercase and not in quotes! However, in this...