Skip to main content

Geodesic Polyline

    Today we will have a look at a very interesting polyline example - "The geodesic polyline". Now the first question that will pop is "What is geodesic?". Mathematically, geodesic means the shortest line between two points on a mathematically defined surface, as a straight line on a plain or an arc of a great circle or sphere.

    The next question after reading the above definition is clearly, "Why do we need geodesic polylines?" and that would be followed up with "What is this Great Circle?". We will discuss this first, before we move on to the actual example today. The example is very very similar to the normal polyline example, with just a small change.

    Having said so, I will now try to explain why we need a geodesic polyline? The shortest distance between two locations on the earth is rarely a straight line as the earth is roughly spherical in nature. So any two points on the earth, even if they are very close lie on a curve and not a straight line. Because of this fact, we need a geodesic (curved) polyline and not just a simple planer one.

    Once we understand the need of the geodesic polylines, the next question to be answered is that of the Great circle. A Great Circle is the intersection of the sphere and a plane which passes through the centre point of the sphere. As a result, the diameter of the great circle is always the same as the diameter of the sphere. So all the 'n' great circles of a sphere have the same diameter and centre as that of the sphere and all great circles have the same circumference. Thus for any two points on the surface of a sphere there is a great circle through the two points. The minor arc of a great circle between two points is the shortest surface-path between them. In this sense the minor arc is analogous to “straight lines” in spherical geometry. The length of the minor arc of great circle is taken as the distance of two points on a surface of a sphere, namely great-circle distance. The great circles are the geodesics of the sphere.The following picture will help you understand better the concept of the Great Circle.


    You can also have a look at an excellent animation explaining the "Great Circle" concept. Now that the theory is clear, let's get our hands dirty with a simple example...Here's the code...


    The output of the above code is as seen in the result section above. Please refer to the comments  in the code for any clarification required. You can just copy and paste the code in a text file and save it with .html extension. Open this html file in any browser of your choice and you will see the map in action.

    I understand that this post has become very long, but all the explained theory is the least minimum that was needed....

Recommended for You

Difference between word-break: break-all versus word-wrap: break-word

The 2 CSS properties word-break: break-all and word-wrap: break-word appear to work in the same way or generate the same output, but there is a slight difference between the 2 and we will be discussing these differences today.



    Take a look at the example above. The difference is quite evident, however I will try to explain it further.

word-break: break-all Irrespective of whether it’s a continuous word or many words, break-all breaks them up at the edge of the width limit even within the characters of the same word
word-wrap: break-word This will wrap long words onto the next line.break-word adjusts different words so that they do not break in the middle.
    So if you have many fixed-size spans which get content dynamically, you might just prefer using word-wrap: break-word, as that way only the continuous words are broken in between, and in case it’s a sentence comprising many words, the spaces are adjusted to get intact words (no break within a word).     In case you want to exp…

jQuery Mobile's Next Big Step

Spatial Unlimited changes to The UI Dev


After being hosted on blogger 😣 for the last 6 years 📆, this page has finally been moved to Github.io
This means a few things for you, dear reader!

You will be redirected to the new page shortly! ⏩ ⏩ ⏩


Once crapy HTML is now better looking Markdown! 😍 😍


The entire blog is a Github repo! 😍 😍


Spatial Unlimited is now The UI Dev 😍 😍


Playing with the markers and info window bubbles...

In the last few posts, we have seen some marker examples and some information window examples. Now, lets do something interesting combining these two things. Just writing that "This is an info window" in the information bubble is not very interesting! And I know this...Have gone through the same phase!

    So, today we will do something interesting! We will display the latitude- longitude co-ordinates of the point that the user clicks on the map! Doing this is not at all complex! Copy paste the following code and you will see for yourself a map coming to life!


    The output of the above code looks as seen in the result section above! If you have any queries regarding the above code please comment on the blog post or feel free to contact me at my mail ID.

Retriving co-ordinates...

We have seen 2 Google Maps API v3 examples wherein we have retrieved the latitude-longitude co-ordinates of the point of click on the map. In the first example we have displayed the co-ordinates in the information window and in the second, we have displayed the co-ordinates in a form in the information window.

        Today we will create a code to retrieve the latitude longitude co-ordinates in a text box while simultaneously a marker appears on the map as well. So, here goes the code.

<html>
<head>
<title>
Google Maps API v3 - Adding marker on Click and retrieving the co-ordinates in a text box
</title>
<script type="text/javascript" src="http://maps.google.com/maps/api/js?sensor=false"></script>
<script type="text/javascript">
var map;    //When using event as a parameter to a function declare map, strictly as a global variable
function initialize()
{
    var myLatlng = new google.maps.LatLng(28.635157…

Where does Google get it's live traffic data from?

Referring to a post that I wrote earlier, Google’s - Live traffic Layer, ever wondered how Google collected this data? I was wondering the other day, how Google received live data to display it on their maps as a layer! I looked up the web and found something very interesting and am sharing the same with you all.As we all know, the traffic layer is available most accurately in several states in USA. Most major metro areas in the US have sensors embedded in their highways. These sensors track real time traffic data. Easy to miss at high speeds (hopefully anyway, traffic permitting), more commonly noticed may be the similar sensors that often exist at many busy intersections that help the traffic lights most efficiently let the most amount of people through. The information from these tracking sensors is reported back to the Department of Transportation (DOT). The DOT uses this data to update some of the digital signs that report traffic conditions in many metro areas. They also…